1153 lines
40 KiB
Lua
1153 lines
40 KiB
Lua
--[[ License
|
|
A math library made in Lua
|
|
copyright (C) 2014 Davis Claiborne
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
Contact me at davisclaib@gmail.com
|
|
]]
|
|
|
|
-- Local Utility Functions ---------------------- {{{
|
|
local unpack = table.unpack or unpack
|
|
|
|
-- Used to handle variable-argument functions and whether they are passed as func{ table } or func( unpack( table ) )
|
|
local function checkInput( ... )
|
|
local input = {}
|
|
if type( ... ) ~= 'table' then input = { ... } else input = ... end
|
|
return input
|
|
end
|
|
|
|
-- Deals with floats / verify false false values. This can happen because of significant figures.
|
|
local function checkFuzzy( number1, number2 )
|
|
return ( number1 - .00001 <= number2 and number2 <= number1 + .00001 )
|
|
end
|
|
|
|
-- Remove multiple occurrences from a table.
|
|
local function removeDuplicatePairs( tab )
|
|
for index1 = #tab, 1, -1 do
|
|
local first = tab[index1]
|
|
for index2 = #tab, 1, -1 do
|
|
local second = tab[index2]
|
|
if index1 ~= index2 then
|
|
if type( first[1] ) == 'number' and type( second[1] ) == 'number' and type( first[2] ) == 'number' and type( second[2] ) == 'number' then
|
|
if checkFuzzy( first[1], second[1] ) and checkFuzzy( first[2], second[2] ) then
|
|
table.remove( tab, index1 )
|
|
end
|
|
elseif first[1] == second[1] and first[2] == second[2] then
|
|
table.remove( tab, index1 )
|
|
end
|
|
end
|
|
end
|
|
end
|
|
return tab
|
|
end
|
|
|
|
|
|
local function removeDuplicates4Points( tab )
|
|
for index1 = #tab, 1, -1 do
|
|
local first = tab[index1]
|
|
for index2 = #tab, 1, -1 do
|
|
local second = tab[index2]
|
|
if index1 ~= index2 then
|
|
if type( first[1] ) ~= type( second[1] ) then return false end
|
|
if type( first[2] ) == 'number' and type( second[2] ) == 'number' and type( first[3] ) == 'number' and type( second[3] ) == 'number' then
|
|
if checkFuzzy( first[2], second[2] ) and checkFuzzy( first[3], second[3] ) then
|
|
table.remove( tab, index1 )
|
|
end
|
|
elseif checkFuzzy( first[1], second[1] ) and checkFuzzy( first[2], second[2] ) and checkFuzzy( first[3], second[3] ) then
|
|
table.remove( tab, index1 )
|
|
end
|
|
end
|
|
end
|
|
end
|
|
return tab
|
|
end
|
|
|
|
|
|
-- Add points to the table.
|
|
local function addPoints( tab, x, y )
|
|
tab[#tab + 1] = x
|
|
tab[#tab + 1] = y
|
|
end
|
|
|
|
-- Like removeDuplicatePairs but specifically for numbers in a flat table
|
|
local function removeDuplicatePointsFlat( tab )
|
|
for i = #tab, 1 -2 do
|
|
for ii = #tab - 2, 3, -2 do
|
|
if i ~= ii then
|
|
local x1, y1 = tab[i], tab[i + 1]
|
|
local x2, y2 = tab[ii], tab[ii + 1]
|
|
if checkFuzzy( x1, x2 ) and checkFuzzy( y1, y2 ) then
|
|
table.remove( tab, ii ); table.remove( tab, ii + 1 )
|
|
end
|
|
end
|
|
end
|
|
end
|
|
return tab
|
|
end
|
|
|
|
|
|
-- Check if input is actually a number
|
|
local function validateNumber( n )
|
|
if type( n ) ~= 'number' then return false
|
|
elseif n ~= n then return false -- nan
|
|
elseif math.abs( n ) == math.huge then return false
|
|
else return true end
|
|
end
|
|
|
|
local function cycle( tab, index ) return tab[( index - 1 ) % #tab + 1] end
|
|
|
|
local function getGreatestPoint( points, offset )
|
|
offset = offset or 1
|
|
local start = 2 - offset
|
|
local greatest = points[start]
|
|
local least = points[start]
|
|
for i = 2, #points / 2 do
|
|
i = i * 2 - offset
|
|
if points[i] > greatest then
|
|
greatest = points[i]
|
|
end
|
|
if points[i] < least then
|
|
least = points[i]
|
|
end
|
|
end
|
|
return greatest, least
|
|
end
|
|
|
|
local function isWithinBounds( min, num, max )
|
|
return num >= min and num <= max
|
|
end
|
|
|
|
local function distance2( x1, y1, x2, y2 ) -- Faster since it does not use math.sqrt
|
|
local dx, dy = x1 - x2, y1 - y2
|
|
return dx * dx + dy * dy
|
|
end -- }}}
|
|
|
|
-- Points -------------------------------------- {{{
|
|
local function rotatePoint( x, y, rotation, ox, oy )
|
|
ox, oy = ox or 0, oy or 0
|
|
return ( x - ox ) * math.cos( rotation ) + ox - ( y - oy ) * math.sin( rotation ), ( x - ox ) * math.sin( rotation ) + ( y - oy ) * math.cos( rotation ) + oy
|
|
end
|
|
|
|
local function scalePoint( x, y, scale, ox, oy )
|
|
ox, oy = ox or 0, oy or 0
|
|
return ( x - ox ) * scale + ox, ( y - oy ) * scale + oy
|
|
end
|
|
-- }}}
|
|
|
|
-- Lines --------------------------------------- {{{
|
|
-- Returns the length of a line.
|
|
local function getLength( x1, y1, x2, y2 )
|
|
local dx, dy = x1 - x2, y1 - y2
|
|
return math.sqrt( dx * dx + dy * dy )
|
|
end
|
|
|
|
-- Gives the midpoint of a line.
|
|
local function getMidpoint( x1, y1, x2, y2 )
|
|
return ( x1 + x2 ) / 2, ( y1 + y2 ) / 2
|
|
end
|
|
|
|
-- Gives the slope of a line.
|
|
local function getSlope( x1, y1, x2, y2 )
|
|
if checkFuzzy( x1, x2 ) then return false end -- Technically it's undefined, but this is easier to program.
|
|
return ( y1 - y2 ) / ( x1 - x2 )
|
|
end
|
|
|
|
-- Gives the perpendicular slope of a line.
|
|
-- x1, y1, x2, y2
|
|
-- slope
|
|
local function getPerpendicularSlope( ... )
|
|
local input = checkInput( ... )
|
|
local slope
|
|
|
|
if #input ~= 1 then
|
|
slope = getSlope( unpack( input ) )
|
|
else
|
|
slope = unpack( input )
|
|
end
|
|
|
|
if not slope then return 0 -- Vertical lines become horizontal.
|
|
elseif checkFuzzy( slope, 0 ) then return false -- Horizontal lines become vertical.
|
|
else return -1 / slope end
|
|
end
|
|
|
|
-- Gives the y-intercept of a line.
|
|
-- x1, y1, x2, y2
|
|
-- x1, y1, slope
|
|
local function getYIntercept( x, y, ... )
|
|
local input = checkInput( ... )
|
|
local slope
|
|
|
|
if #input == 1 then
|
|
slope = input[1]
|
|
else
|
|
slope = getSlope( x, y, unpack( input ) )
|
|
end
|
|
|
|
if not slope then return x, true end -- This way we have some information on the line.
|
|
return y - slope * x, false
|
|
end
|
|
|
|
-- Gives the intersection of two lines.
|
|
-- slope1, slope2, x1, y1, x2, y2
|
|
-- slope1, intercept1, slope2, intercept2
|
|
-- x1, y1, x2, y2, x3, y3, x4, y4
|
|
local function getLineLineIntersection( ... )
|
|
local input = checkInput( ... )
|
|
local x1, y1, x2, y2, x3, y3, x4, y4
|
|
local slope1, intercept1
|
|
local slope2, intercept2
|
|
local x, y
|
|
|
|
if #input == 4 then -- Given slope1, intercept1, slope2, intercept2.
|
|
slope1, intercept1, slope2, intercept2 = unpack( input )
|
|
|
|
-- Since these are lines, not segments, we can use arbitrary points, such as ( 1, y ), ( 2, y )
|
|
y1 = slope1 and slope1 * 1 + intercept1 or 1
|
|
y2 = slope1 and slope1 * 2 + intercept1 or 2
|
|
y3 = slope2 and slope2 * 1 + intercept2 or 1
|
|
y4 = slope2 and slope2 * 2 + intercept2 or 2
|
|
x1 = slope1 and ( y1 - intercept1 ) / slope1 or intercept1
|
|
x2 = slope1 and ( y2 - intercept1 ) / slope1 or intercept1
|
|
x3 = slope2 and ( y3 - intercept2 ) / slope2 or intercept2
|
|
x4 = slope2 and ( y4 - intercept2 ) / slope2 or intercept2
|
|
elseif #input == 6 then -- Given slope1, intercept1, and 2 points on the other line.
|
|
slope1, intercept1 = input[1], input[2]
|
|
slope2 = getSlope( input[3], input[4], input[5], input[6] )
|
|
intercept2 = getYIntercept( input[3], input[4], input[5], input[6] )
|
|
|
|
y1 = slope1 and slope1 * 1 + intercept1 or 1
|
|
y2 = slope1 and slope1 * 2 + intercept1 or 2
|
|
y3 = input[4]
|
|
y4 = input[6]
|
|
x1 = slope1 and ( y1 - intercept1 ) / slope1 or intercept1
|
|
x2 = slope1 and ( y2 - intercept1 ) / slope1 or intercept1
|
|
x3 = input[3]
|
|
x4 = input[5]
|
|
elseif #input == 8 then -- Given 2 points on line 1 and 2 points on line 2.
|
|
slope1 = getSlope( input[1], input[2], input[3], input[4] )
|
|
intercept1 = getYIntercept( input[1], input[2], input[3], input[4] )
|
|
slope2 = getSlope( input[5], input[6], input[7], input[8] )
|
|
intercept2 = getYIntercept( input[5], input[6], input[7], input[8] )
|
|
|
|
x1, y1, x2, y2, x3, y3, x4, y4 = unpack( input )
|
|
end
|
|
|
|
if not slope1 and not slope2 then -- Both are vertical lines
|
|
if x1 == x3 then -- Have to have the same x positions to intersect
|
|
return true
|
|
else
|
|
return false
|
|
end
|
|
elseif not slope1 then -- First is vertical
|
|
x = x1 -- They have to meet at this x, since it is this line's only x
|
|
y = slope2 and slope2 * x + intercept2 or 1
|
|
elseif not slope2 then -- Second is vertical
|
|
x = x3 -- Vice-Versa
|
|
y = slope1 * x + intercept1
|
|
elseif checkFuzzy( slope1, slope2 ) then -- Parallel (not vertical)
|
|
if checkFuzzy( intercept1, intercept2 ) then -- Same intercept
|
|
return true
|
|
else
|
|
return false
|
|
end
|
|
else -- Regular lines
|
|
x = ( -intercept1 + intercept2 ) / ( slope1 - slope2 )
|
|
y = slope1 * x + intercept1
|
|
end
|
|
|
|
return x, y
|
|
end
|
|
|
|
-- Gives the closest point on a line to a point.
|
|
-- perpendicularX, perpendicularY, x1, y1, x2, y2
|
|
-- perpendicularX, perpendicularY, slope, intercept
|
|
local function getClosestPoint( perpendicularX, perpendicularY, ... )
|
|
local input = checkInput( ... )
|
|
local x, y, x1, y1, x2, y2, slope, intercept
|
|
|
|
if #input == 4 then -- Given perpendicularX, perpendicularY, x1, y1, x2, y2
|
|
x1, y1, x2, y2 = unpack( input )
|
|
slope = getSlope( x1, y1, x2, y2 )
|
|
intercept = getYIntercept( x1, y1, x2, y2 )
|
|
elseif #input == 2 then -- Given perpendicularX, perpendicularY, slope, intercept
|
|
slope, intercept = unpack( input )
|
|
x1, y1 = 1, slope and slope * 1 + intercept or 1 -- Need x1 and y1 in case of vertical/horizontal lines.
|
|
end
|
|
|
|
if not slope then -- Vertical line
|
|
x, y = x1, perpendicularY -- Closest point is always perpendicular.
|
|
elseif checkFuzzy( slope, 0 ) then -- Horizontal line
|
|
x, y = perpendicularX, y1
|
|
else
|
|
local perpendicularSlope = getPerpendicularSlope( slope )
|
|
local perpendicularIntercept = getYIntercept( perpendicularX, perpendicularY, perpendicularSlope )
|
|
x, y = getLineLineIntersection( slope, intercept, perpendicularSlope, perpendicularIntercept )
|
|
end
|
|
|
|
return x, y
|
|
end
|
|
|
|
-- Gives the intersection of a line and a line segment.
|
|
-- x1, y1, x2, y2, x3, y3, x4, y4
|
|
-- x1, y1, x2, y2, slope, intercept
|
|
local function getLineSegmentIntersection( x1, y1, x2, y2, ... )
|
|
local input = checkInput( ... )
|
|
|
|
local slope1, intercept1, x, y, lineX1, lineY1, lineX2, lineY2
|
|
local slope2, intercept2 = getSlope( x1, y1, x2, y2 ), getYIntercept( x1, y1, x2, y2 )
|
|
|
|
if #input == 2 then -- Given slope, intercept
|
|
slope1, intercept1 = input[1], input[2]
|
|
lineX1, lineY1 = 1, slope1 and slope1 + intercept1
|
|
lineX2, lineY2 = 2, slope1 and slope1 * 2 + intercept1
|
|
else -- Given x3, y3, x4, y4
|
|
lineX1, lineY1, lineX2, lineY2 = unpack( input )
|
|
slope1 = getSlope( unpack( input ) )
|
|
intercept1 = getYIntercept( unpack( input ) )
|
|
end
|
|
|
|
if not slope1 and not slope2 then -- Vertical lines
|
|
if checkFuzzy( x1, lineX1 ) then
|
|
return x1, y1, x2, y2
|
|
else
|
|
return false
|
|
end
|
|
elseif not slope1 then -- slope1 is vertical
|
|
x, y = input[1], slope2 * input[1] + intercept2
|
|
elseif not slope2 then -- slope2 is vertical
|
|
x, y = x1, slope1 * x1 + intercept1
|
|
else
|
|
x, y = getLineLineIntersection( slope1, intercept1, slope2, intercept2 )
|
|
end
|
|
|
|
local length1, length2, distance
|
|
if x == true then -- Lines are collinear.
|
|
return x1, y1, x2, y2
|
|
elseif x then -- There is an intersection
|
|
length1, length2 = getLength( x1, y1, x, y ), getLength( x2, y2, x, y )
|
|
distance = getLength( x1, y1, x2, y2 )
|
|
else -- Lines are parallel but not collinear.
|
|
if checkFuzzy( intercept1, intercept2 ) then
|
|
return x1, y1, x2, y2
|
|
else
|
|
return false
|
|
end
|
|
end
|
|
|
|
if length1 <= distance and length2 <= distance then return x, y else return false end
|
|
end
|
|
|
|
-- Checks if a point is on a line.
|
|
-- Does not support the format using slope because vertical lines would be impossible to check.
|
|
local function checkLinePoint( x, y, x1, y1, x2, y2 )
|
|
local m = getSlope( x1, y1, x2, y2 )
|
|
local b = getYIntercept( x1, y1, m )
|
|
|
|
if not m then -- Vertical
|
|
return checkFuzzy( x, x1 )
|
|
end
|
|
return checkFuzzy( y, m * x + b )
|
|
end -- }}}
|
|
|
|
-- Segment -------------------------------------- {{{
|
|
-- Gives the perpendicular bisector of a line.
|
|
local function getPerpendicularBisector( x1, y1, x2, y2 )
|
|
local slope = getSlope( x1, y1, x2, y2 )
|
|
local midpointX, midpointY = getMidpoint( x1, y1, x2, y2 )
|
|
return midpointX, midpointY, getPerpendicularSlope( slope )
|
|
end
|
|
|
|
-- Gives whether or not a point lies on a line segment.
|
|
local function checkSegmentPoint( px, py, x1, y1, x2, y2 )
|
|
-- Explanation around 5:20: https://www.youtube.com/watch?v=A86COO8KC58
|
|
local x = checkLinePoint( px, py, x1, y1, x2, y2 )
|
|
if not x then return false end
|
|
|
|
local lengthX = x2 - x1
|
|
local lengthY = y2 - y1
|
|
|
|
if checkFuzzy( lengthX, 0 ) then -- Vertical line
|
|
if checkFuzzy( px, x1 ) then
|
|
local low, high
|
|
if y1 > y2 then low = y2; high = y1
|
|
else low = y1; high = y2 end
|
|
|
|
if py >= low and py <= high then return true
|
|
else return false end
|
|
else
|
|
return false
|
|
end
|
|
elseif checkFuzzy( lengthY, 0 ) then -- Horizontal line
|
|
if checkFuzzy( py, y1 ) then
|
|
local low, high
|
|
if x1 > x2 then low = x2; high = x1
|
|
else low = x1; high = x2 end
|
|
|
|
if px >= low and px <= high then return true
|
|
else return false end
|
|
else
|
|
return false
|
|
end
|
|
end
|
|
|
|
local distanceToPointX = ( px - x1 )
|
|
local distanceToPointY = ( py - y1 )
|
|
local scaleX = distanceToPointX / lengthX
|
|
local scaleY = distanceToPointY / lengthY
|
|
|
|
if ( scaleX >= 0 and scaleX <= 1 ) and ( scaleY >= 0 and scaleY <= 1 ) then -- Intersection
|
|
return true
|
|
end
|
|
return false
|
|
end
|
|
|
|
-- Gives the point of intersection between two line segments.
|
|
local function getSegmentSegmentIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )
|
|
local slope1, intercept1 = getSlope( x1, y1, x2, y2 ), getYIntercept( x1, y1, x2, y2 )
|
|
local slope2, intercept2 = getSlope( x3, y3, x4, y4 ), getYIntercept( x3, y3, x4, y4 )
|
|
|
|
if ( ( slope1 and slope2 ) and checkFuzzy( slope1, slope2 ) ) or ( not slope1 and not slope2 ) then -- Parallel lines
|
|
if checkFuzzy( intercept1, intercept2 ) then -- The same lines, possibly in different points.
|
|
local points = {}
|
|
if checkSegmentPoint( x1, y1, x3, y3, x4, y4 ) then addPoints( points, x1, y1 ) end
|
|
if checkSegmentPoint( x2, y2, x3, y3, x4, y4 ) then addPoints( points, x2, y2 ) end
|
|
if checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) then addPoints( points, x3, y3 ) end
|
|
if checkSegmentPoint( x4, y4, x1, y1, x2, y2 ) then addPoints( points, x4, y4 ) end
|
|
|
|
points = removeDuplicatePointsFlat( points )
|
|
if #points == 0 then return false end
|
|
return unpack( points )
|
|
else
|
|
return false
|
|
end
|
|
end
|
|
|
|
local x, y = getLineLineIntersection( x1, y1, x2, y2, x3, y3, x4, y4 )
|
|
if x and checkSegmentPoint( x, y, x1, y1, x2, y2 ) and checkSegmentPoint( x, y, x3, y3, x4, y4 ) then
|
|
return x, y
|
|
end
|
|
return false
|
|
end -- }}}
|
|
|
|
-- Math ----------------------------------------- {{{
|
|
-- Get the root of a number (i.e. the 2nd (square) root of 4 is 2)
|
|
local function getRoot( number, root )
|
|
return number ^ ( 1 / root )
|
|
end
|
|
|
|
-- Checks if a number is prime.
|
|
local function isPrime( number )
|
|
if number < 2 then return false end
|
|
|
|
for i = 2, math.sqrt( number ) do
|
|
if number % i == 0 then
|
|
return false
|
|
end
|
|
end
|
|
return true
|
|
end
|
|
|
|
-- Rounds a number to the xth decimal place (round( 3.14159265359, 4 ) --> 3.1416)
|
|
local function round( number, place )
|
|
local pow = 10 ^ ( place or 0 )
|
|
return math.floor( number * pow + .5 ) / pow
|
|
end
|
|
|
|
-- Gives the summation given a local function
|
|
local function getSummation( start, stop, func )
|
|
local returnValues = {}
|
|
local sum = 0
|
|
for i = start, stop do
|
|
local value = func( i, returnValues )
|
|
returnValues[i] = value
|
|
sum = sum + value
|
|
end
|
|
return sum
|
|
end
|
|
|
|
-- Gives the percent of change.
|
|
local function getPercentOfChange( old, new )
|
|
if old == 0 and new == 0 then
|
|
return 0
|
|
else
|
|
return ( new - old ) / math.abs( old )
|
|
end
|
|
end
|
|
|
|
-- Gives the percentage of a number.
|
|
local function getPercentage( percent, number )
|
|
return percent * number
|
|
end
|
|
|
|
-- Returns the quadratic roots of an equation.
|
|
local function getQuadraticRoots( a, b, c )
|
|
local discriminant = b ^ 2 - ( 4 * a * c )
|
|
if discriminant < 0 then return false end
|
|
discriminant = math.sqrt( discriminant )
|
|
local denominator = ( 2 * a )
|
|
return ( -b - discriminant ) / denominator, ( -b + discriminant ) / denominator
|
|
end
|
|
|
|
-- Gives the angle between three points.
|
|
local function getAngle( x1, y1, x2, y2, x3, y3 )
|
|
local a = getLength( x3, y3, x2, y2 )
|
|
local b = getLength( x1, y1, x2, y2 )
|
|
local c = getLength( x1, y1, x3, y3 )
|
|
|
|
return math.acos( ( a * a + b * b - c * c ) / ( 2 * a * b ) )
|
|
end -- }}}
|
|
|
|
-- Circle --------------------------------------- {{{
|
|
-- Gives the area of the circle.
|
|
local function getCircleArea( radius )
|
|
return math.pi * ( radius * radius )
|
|
end
|
|
|
|
-- Checks if a point is within the radius of a circle.
|
|
local function checkCirclePoint( x, y, circleX, circleY, radius )
|
|
return getLength( circleX, circleY, x, y ) <= radius
|
|
end
|
|
|
|
-- Checks if a point is on a circle.
|
|
local function isPointOnCircle( x, y, circleX, circleY, radius )
|
|
return checkFuzzy( getLength( circleX, circleY, x, y ), radius )
|
|
end
|
|
|
|
-- Gives the circumference of a circle.
|
|
local function getCircumference( radius )
|
|
return 2 * math.pi * radius
|
|
end
|
|
|
|
-- Gives the intersection of a line and a circle.
|
|
local function getCircleLineIntersection( circleX, circleY, radius, x1, y1, x2, y2 )
|
|
slope = getSlope( x1, y1, x2, y2 )
|
|
intercept = getYIntercept( x1, y1, slope )
|
|
|
|
if slope then
|
|
local a = ( 1 + slope ^ 2 )
|
|
local b = ( -2 * ( circleX ) + ( 2 * slope * intercept ) - ( 2 * circleY * slope ) )
|
|
local c = ( circleX ^ 2 + intercept ^ 2 - 2 * ( circleY ) * ( intercept ) + circleY ^ 2 - radius ^ 2 )
|
|
|
|
x1, x2 = getQuadraticRoots( a, b, c )
|
|
|
|
if not x1 then return false end
|
|
|
|
y1 = slope * x1 + intercept
|
|
y2 = slope * x2 + intercept
|
|
|
|
if checkFuzzy( x1, x2 ) and checkFuzzy( y1, y2 ) then
|
|
return 'tangent', x1, y1
|
|
else
|
|
return 'secant', x1, y1, x2, y2
|
|
end
|
|
else -- Vertical Lines
|
|
local lengthToPoint1 = circleX - x1
|
|
local remainingDistance = lengthToPoint1 - radius
|
|
local intercept = math.sqrt( -( lengthToPoint1 ^ 2 - radius ^ 2 ) )
|
|
|
|
if -( lengthToPoint1 ^ 2 - radius ^ 2 ) < 0 then return false end
|
|
|
|
local bottomX, bottomY = x1, circleY - intercept
|
|
local topX, topY = x1, circleY + intercept
|
|
|
|
if topY ~= bottomY then
|
|
return 'secant', topX, topY, bottomX, bottomY
|
|
else
|
|
return 'tangent', topX, topY
|
|
end
|
|
end
|
|
end
|
|
|
|
-- Gives the type of intersection of a line segment.
|
|
local function getCircleSegmentIntersection( circleX, circleY, radius, x1, y1, x2, y2 )
|
|
local Type, x3, y3, x4, y4 = getCircleLineIntersection( circleX, circleY, radius, x1, y1, x2, y2 )
|
|
if not Type then return false end
|
|
|
|
local slope, intercept = getSlope( x1, y1, x2, y2 ), getYIntercept( x1, y1, x2, y2 )
|
|
|
|
if isPointOnCircle( x1, y1, circleX, circleY, radius ) and isPointOnCircle( x2, y2, circleX, circleY, radius ) then -- Both points are on line-segment.
|
|
return 'chord', x1, y1, x2, y2
|
|
end
|
|
|
|
if slope then
|
|
if checkCirclePoint( x1, y1, circleX, circleY, radius ) and checkCirclePoint( x2, y2, circleX, circleY, radius ) then -- Line-segment is fully in circle.
|
|
return 'enclosed', x1, y1, x2, y2
|
|
elseif x3 and x4 then
|
|
if checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) and not checkSegmentPoint( x4, y4, x1, y1, x2, y2 ) then -- Only the first of the points is on the line-segment.
|
|
return 'tangent', x3, y3
|
|
elseif checkSegmentPoint( x4, y4, x1, y1, x2, y2 ) and not checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) then -- Only the second of the points is on the line-segment.
|
|
return 'tangent', x4, y4
|
|
else -- Neither of the points are on the circle (means that the segment is not on the circle, but "encasing" the circle)
|
|
if checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) and checkSegmentPoint( x4, y4, x1, y1, x2, y2 ) then
|
|
return 'secant', x3, y3, x4, y4
|
|
else
|
|
return false
|
|
end
|
|
end
|
|
elseif not x4 then -- Is a tangent.
|
|
if checkSegmentPoint( x3, y3, x1, y1, x2, y2 ) then
|
|
return 'tangent', x3, y3
|
|
else -- Neither of the points are on the line-segment (means that the segment is not on the circle or "encasing" the circle).
|
|
local length = getLength( x1, y1, x2, y2 )
|
|
local distance1 = getLength( x1, y1, x3, y3 )
|
|
local distance2 = getLength( x2, y2, x3, y3 )
|
|
|
|
if length > distance1 or length > distance2 then
|
|
return false
|
|
elseif length < distance1 and length < distance2 then
|
|
return false
|
|
else
|
|
return 'tangent', x3, y3
|
|
end
|
|
end
|
|
end
|
|
else
|
|
local lengthToPoint1 = circleX - x1
|
|
local remainingDistance = lengthToPoint1 - radius
|
|
local intercept = math.sqrt( -( lengthToPoint1 ^ 2 - radius ^ 2 ) )
|
|
|
|
if -( lengthToPoint1 ^ 2 - radius ^ 2 ) < 0 then return false end
|
|
|
|
local topX, topY = x1, circleY - intercept
|
|
local bottomX, bottomY = x1, circleY + intercept
|
|
|
|
local length = getLength( x1, y1, x2, y2 )
|
|
local distance1 = getLength( x1, y1, topX, topY )
|
|
local distance2 = getLength( x2, y2, topX, topY )
|
|
|
|
if bottomY ~= topY then -- Not a tangent
|
|
if checkSegmentPoint( topX, topY, x1, y1, x2, y2 ) and checkSegmentPoint( bottomX, bottomY, x1, y1, x2, y2 ) then
|
|
return 'chord', topX, topY, bottomX, bottomY
|
|
elseif checkSegmentPoint( topX, topY, x1, y1, x2, y2 ) then
|
|
return 'tangent', topX, topY
|
|
elseif checkSegmentPoint( bottomX, bottomY, x1, y1, x2, y2 ) then
|
|
return 'tangent', bottomX, bottomY
|
|
else
|
|
return false
|
|
end
|
|
else -- Tangent
|
|
if checkSegmentPoint( topX, topY, x1, y1, x2, y2 ) then
|
|
return 'tangent', topX, topY
|
|
else
|
|
return false
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
-- Checks if one circle intersects another circle.
|
|
local function getCircleCircleIntersection( circle1x, circle1y, radius1, circle2x, circle2y, radius2 )
|
|
local length = getLength( circle1x, circle1y, circle2x, circle2y )
|
|
if length > radius1 + radius2 then return false end -- If the distance is greater than the two radii, they can't intersect.
|
|
if checkFuzzy( length, 0 ) and checkFuzzy( radius1, radius2 ) then return 'equal' end
|
|
if checkFuzzy( circle1x, circle2x ) and checkFuzzy( circle1y, circle2y ) then return 'collinear' end
|
|
|
|
local a = ( radius1 * radius1 - radius2 * radius2 + length * length ) / ( 2 * length )
|
|
local h = math.sqrt( radius1 * radius1 - a * a )
|
|
|
|
local p2x = circle1x + a * ( circle2x - circle1x ) / length
|
|
local p2y = circle1y + a * ( circle2y - circle1y ) / length
|
|
local p3x = p2x + h * ( circle2y - circle1y ) / length
|
|
local p3y = p2y - h * ( circle2x - circle1x ) / length
|
|
local p4x = p2x - h * ( circle2y - circle1y ) / length
|
|
local p4y = p2y + h * ( circle2x - circle1x ) / length
|
|
|
|
if not validateNumber( p3x ) or not validateNumber( p3y ) or not validateNumber( p4x ) or not validateNumber( p4y ) then
|
|
return 'inside'
|
|
end
|
|
|
|
if checkFuzzy( length, radius1 + radius2 ) or checkFuzzy( length, math.abs( radius1 - radius2 ) ) then return 'tangent', p3x, p3y end
|
|
return 'intersection', p3x, p3y, p4x, p4y
|
|
end
|
|
|
|
-- Checks if circle1 is entirely inside of circle2.
|
|
local function isCircleCompletelyInsideCircle( circle1x, circle1y, circle1radius, circle2x, circle2y, circle2radius )
|
|
if not checkCirclePoint( circle1x, circle1y, circle2x, circle2y, circle2radius ) then return false end
|
|
local Type = getCircleCircleIntersection( circle2x, circle2y, circle2radius, circle1x, circle1y, circle1radius )
|
|
if ( Type ~= 'tangent' and Type ~= 'collinear' and Type ~= 'inside' ) then return false end
|
|
return true
|
|
end
|
|
|
|
-- Checks if a line-segment is entirely within a circle.
|
|
local function isSegmentCompletelyInsideCircle( circleX, circleY, circleRadius, x1, y1, x2, y2 )
|
|
local Type = getCircleSegmentIntersection( circleX, circleY, circleRadius, x1, y1, x2, y2 )
|
|
return Type == 'enclosed'
|
|
end -- }}}
|
|
|
|
-- Polygon -------------------------------------- {{{
|
|
-- Gives the signed area.
|
|
-- If the points are clockwise the number is negative, otherwise, it's positive.
|
|
local function getSignedPolygonArea( ... )
|
|
local points = checkInput( ... )
|
|
|
|
-- Shoelace formula (https://en.wikipedia.org/wiki/Shoelace_formula).
|
|
points[#points + 1] = points[1]
|
|
points[#points + 1] = points[2]
|
|
|
|
return ( .5 * getSummation( 1, #points / 2,
|
|
function( index )
|
|
index = index * 2 - 1 -- Convert it to work properly.
|
|
return ( ( points[index] * cycle( points, index + 3 ) ) - ( cycle( points, index + 2 ) * points[index + 1] ) )
|
|
end
|
|
) )
|
|
end
|
|
|
|
-- Simply returns the area of the polygon.
|
|
local function getPolygonArea( ... )
|
|
return math.abs( getSignedPolygonArea( ... ) )
|
|
end
|
|
|
|
-- Gives the height of a triangle, given the base.
|
|
-- base, x1, y1, x2, y2, x3, y3, x4, y4
|
|
-- base, area
|
|
local function getTriangleHeight( base, ... )
|
|
local input = checkInput( ... )
|
|
local area
|
|
|
|
if #input == 1 then area = input[1] -- Given area.
|
|
else area = getPolygonArea( input ) end -- Given coordinates.
|
|
|
|
return ( 2 * area ) / base, area
|
|
end
|
|
|
|
-- Gives the centroid of the polygon.
|
|
local function getCentroid( ... )
|
|
local points = checkInput( ... )
|
|
|
|
points[#points + 1] = points[1]
|
|
points[#points + 1] = points[2]
|
|
|
|
local area = getSignedPolygonArea( points ) -- Needs to be signed here in case points are counter-clockwise.
|
|
|
|
-- This formula: https://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon
|
|
local centroidX = ( 1 / ( 6 * area ) ) * ( getSummation( 1, #points / 2,
|
|
function( index )
|
|
index = index * 2 - 1 -- Convert it to work properly.
|
|
return ( ( points[index] + cycle( points, index + 2 ) ) * ( ( points[index] * cycle( points, index + 3 ) ) - ( cycle( points, index + 2 ) * points[index + 1] ) ) )
|
|
end
|
|
) )
|
|
|
|
local centroidY = ( 1 / ( 6 * area ) ) * ( getSummation( 1, #points / 2,
|
|
function( index )
|
|
index = index * 2 - 1 -- Convert it to work properly.
|
|
return ( ( points[index + 1] + cycle( points, index + 3 ) ) * ( ( points[index] * cycle( points, index + 3 ) ) - ( cycle( points, index + 2 ) * points[index + 1] ) ) )
|
|
end
|
|
) )
|
|
|
|
return centroidX, centroidY
|
|
end
|
|
|
|
-- Returns whether or not a line intersects a polygon.
|
|
-- x1, y1, x2, y2, polygonPoints
|
|
local function getPolygonLineIntersection( x1, y1, x2, y2, ... )
|
|
local input = checkInput( ... )
|
|
local choices = {}
|
|
|
|
local slope = getSlope( x1, y1, x2, y2 )
|
|
local intercept = getYIntercept( x1, y1, slope )
|
|
|
|
local x3, y3, x4, y4
|
|
if slope then
|
|
x3, x4 = 1, 2
|
|
y3, y4 = slope * x3 + intercept, slope * x4 + intercept
|
|
else
|
|
x3, x4 = x1, x1
|
|
y3, y4 = y1, y2
|
|
end
|
|
|
|
for i = 1, #input, 2 do
|
|
local x1, y1, x2, y2 = getLineSegmentIntersection( input[i], input[i + 1], cycle( input, i + 2 ), cycle( input, i + 3 ), x3, y3, x4, y4 )
|
|
if x1 and not x2 then choices[#choices + 1] = { x1, y1 }
|
|
elseif x1 and x2 then choices[#choices + 1] = { x1, y1, x2, y2 } end
|
|
-- No need to check 2-point sets since they only intersect each poly line once.
|
|
end
|
|
|
|
local final = removeDuplicatePairs( choices )
|
|
return #final > 0 and final or false
|
|
end
|
|
|
|
-- Returns if the line segment intersects the polygon.
|
|
-- x1, y1, x2, y2, polygonPoints
|
|
local function getPolygonSegmentIntersection( x1, y1, x2, y2, ... )
|
|
local input = checkInput( ... )
|
|
local choices = {}
|
|
|
|
for i = 1, #input, 2 do
|
|
local x1, y1, x2, y2 = getSegmentSegmentIntersection( input[i], input[i + 1], cycle( input, i + 2 ), cycle( input, i + 3 ), x1, y1, x2, y2 )
|
|
if x1 and not x2 then choices[#choices + 1] = { x1, y1 }
|
|
elseif x2 then choices[#choices + 1] = { x1, y1, x2, y2 } end
|
|
end
|
|
|
|
local final = removeDuplicatePairs( choices )
|
|
return #final > 0 and final or false
|
|
end
|
|
|
|
-- Checks if the point lies INSIDE the polygon not on the polygon.
|
|
local function checkPolygonPoint( px, py, ... )
|
|
local points = { unpack( checkInput( ... ) ) } -- Make a new table, as to not edit values of previous.
|
|
|
|
local greatest, least = getGreatestPoint( points, 0 )
|
|
if not isWithinBounds( least, py, greatest ) then return false end
|
|
greatest, least = getGreatestPoint( points )
|
|
if not isWithinBounds( least, px, greatest ) then return false end
|
|
|
|
local count = 0
|
|
for i = 1, #points, 2 do
|
|
if checkFuzzy( points[i + 1], py ) then
|
|
points[i + 1] = py + .001 -- Handles vertices that lie on the point.
|
|
-- Not exactly mathematically correct, but a lot easier.
|
|
end
|
|
if points[i + 3] and checkFuzzy( points[i + 3], py ) then
|
|
points[i + 3] = py + .001 -- Do not need to worry about alternate case, since points[2] has already been done.
|
|
end
|
|
local x1, y1 = points[i], points[i + 1]
|
|
local x2, y2 = points[i + 2] or points[1], points[i + 3] or points[2]
|
|
|
|
if getSegmentSegmentIntersection( px, py, greatest, py, x1, y1, x2, y2 ) then
|
|
count = count + 1
|
|
end
|
|
end
|
|
|
|
return count and count % 2 ~= 0
|
|
end
|
|
|
|
-- Returns if the line segment is fully or partially inside.
|
|
-- x1, y1, x2, y2, polygonPoints
|
|
local function isSegmentInsidePolygon( x1, y1, x2, y2, ... )
|
|
local input = checkInput( ... )
|
|
|
|
local choices = getPolygonSegmentIntersection( x1, y1, x2, y2, input ) -- If it's partially enclosed that's all we need.
|
|
if choices then return true end
|
|
|
|
if checkPolygonPoint( x1, y1, input ) or checkPolygonPoint( x2, y2, input ) then return true end
|
|
return false
|
|
end
|
|
|
|
-- Returns whether two polygons intersect.
|
|
local function getPolygonPolygonIntersection( polygon1, polygon2 )
|
|
local choices = {}
|
|
|
|
for index1 = 1, #polygon1, 2 do
|
|
local intersections = getPolygonSegmentIntersection( polygon1[index1], polygon1[index1 + 1], cycle( polygon1, index1 + 2 ), cycle( polygon1, index1 + 3 ), polygon2 )
|
|
if intersections then
|
|
for index2 = 1, #intersections do
|
|
choices[#choices + 1] = intersections[index2]
|
|
end
|
|
end
|
|
end
|
|
|
|
for index1 = 1, #polygon2, 2 do
|
|
local intersections = getPolygonSegmentIntersection( polygon2[index1], polygon2[index1 + 1], cycle( polygon2, index1 + 2 ), cycle( polygon2, index1 + 3 ), polygon1 )
|
|
if intersections then
|
|
for index2 = 1, #intersections do
|
|
choices[#choices + 1] = intersections[index2]
|
|
end
|
|
end
|
|
end
|
|
|
|
choices = removeDuplicatePairs( choices )
|
|
for i = #choices, 1, -1 do
|
|
if type( choices[i][1] ) == 'table' then -- Remove co-linear pairs.
|
|
table.remove( choices, i )
|
|
end
|
|
end
|
|
|
|
return #choices > 0 and choices
|
|
end
|
|
|
|
-- Returns whether the circle intersects the polygon.
|
|
-- x, y, radius, polygonPoints
|
|
local function getPolygonCircleIntersection( x, y, radius, ... )
|
|
local input = checkInput( ... )
|
|
local choices = {}
|
|
|
|
for i = 1, #input, 2 do
|
|
local Type, x1, y1, x2, y2 = getCircleSegmentIntersection( x, y, radius, input[i], input[i + 1], cycle( input, i + 2 ), cycle( input, i + 3 ) )
|
|
if x2 then
|
|
choices[#choices + 1] = { Type, x1, y1, x2, y2 }
|
|
elseif x1 then choices[#choices + 1] = { Type, x1, y1 } end
|
|
end
|
|
|
|
local final = removeDuplicates4Points( choices )
|
|
|
|
return #final > 0 and final
|
|
end
|
|
|
|
-- Returns whether the circle is inside the polygon.
|
|
-- x, y, radius, polygonPoints
|
|
local function isCircleInsidePolygon( x, y, radius, ... )
|
|
local input = checkInput( ... )
|
|
return checkPolygonPoint( x, y, input )
|
|
end
|
|
|
|
-- Returns whether the polygon is inside the polygon.
|
|
local function isPolygonInsidePolygon( polygon1, polygon2 )
|
|
local bool = false
|
|
for i = 1, #polygon2, 2 do
|
|
local result = false
|
|
result = isSegmentInsidePolygon( polygon2[i], polygon2[i + 1], cycle( polygon2, i + 2 ), cycle( polygon2, i + 3 ), polygon1 )
|
|
if result then bool = true; break end
|
|
end
|
|
return bool
|
|
end
|
|
|
|
-- Checks if a segment is completely inside a polygon
|
|
local function isSegmentCompletelyInsidePolygon( x1, y1, x2, y2, ... )
|
|
local polygon = checkInput( ... )
|
|
if not checkPolygonPoint( x1, y1, polygon )
|
|
or not checkPolygonPoint( x2, y2, polygon )
|
|
or getPolygonSegmentIntersection( x1, y1, x2, y2, polygon ) then
|
|
return false
|
|
end
|
|
return true
|
|
end
|
|
|
|
-- Checks if a polygon is completely inside another polygon
|
|
local function isPolygonCompletelyInsidePolygon( polygon1, polygon2 )
|
|
for i = 1, #polygon1, 2 do
|
|
local x1, y1 = polygon1[i], polygon1[i + 1]
|
|
local x2, y2 = polygon1[i + 2] or polygon1[1], polygon1[i + 3] or polygon1[2]
|
|
if not isSegmentCompletelyInsidePolygon( x1, y1, x2, y2, polygon2 ) then
|
|
return false
|
|
end
|
|
end
|
|
return true
|
|
end
|
|
|
|
-------------- Circle w/ Polygons --------------
|
|
-- Gets if a polygon is completely within a circle
|
|
-- circleX, circleY, circleRadius, polygonPoints
|
|
local function isPolygonCompletelyInsideCircle( circleX, circleY, circleRadius, ... )
|
|
local input = checkInput( ... )
|
|
local function isDistanceLess( px, py, x, y, circleRadius ) -- Faster, does not use math.sqrt
|
|
local distanceX, distanceY = px - x, py - y
|
|
return distanceX * distanceX + distanceY * distanceY < circleRadius * circleRadius -- Faster. For comparing distances only.
|
|
end
|
|
|
|
for i = 1, #input, 2 do
|
|
if not checkCirclePoint( input[i], input[i + 1], circleX, circleY, circleRadius ) then return false end
|
|
end
|
|
return true
|
|
end
|
|
|
|
-- Checks if a circle is completely within a polygon
|
|
-- circleX, circleY, circleRadius, polygonPoints
|
|
local function isCircleCompletelyInsidePolygon( circleX, circleY, circleRadius, ... )
|
|
local input = checkInput( ... )
|
|
if not checkPolygonPoint( circleX, circleY, ... ) then return false end
|
|
|
|
local rad2 = circleRadius * circleRadius
|
|
|
|
for i = 1, #input, 2 do
|
|
local x1, y1 = input[i], input[i + 1]
|
|
local x2, y2 = input[i + 2] or input[1], input[i + 3] or input[2]
|
|
if distance2( x1, y1, circleX, circleY ) <= rad2 then return false end
|
|
if getCircleSegmentIntersection( circleX, circleY, circleRadius, x1, y1, x2, y2 ) then return false end
|
|
end
|
|
return true
|
|
end -- }}}
|
|
|
|
-- Statistics ----------------------------------- {{{
|
|
-- Gets the average of a list of points
|
|
-- points
|
|
local function getMean( ... )
|
|
local input = checkInput( ... )
|
|
|
|
mean = getSummation( 1, #input,
|
|
function( i, t )
|
|
return input[i]
|
|
end
|
|
) / #input
|
|
|
|
return mean
|
|
end
|
|
|
|
local function getMedian( ... )
|
|
local input = checkInput( ... )
|
|
|
|
table.sort( input )
|
|
|
|
local median
|
|
if #input % 2 == 0 then -- If you have an even number of terms, you need to get the average of the middle 2.
|
|
median = getMean( input[#input / 2], input[#input / 2 + 1] )
|
|
else
|
|
median = input[#input / 2 + .5]
|
|
end
|
|
|
|
return median
|
|
end
|
|
|
|
-- Gets the mode of a number.
|
|
local function getMode( ... )
|
|
local input = checkInput( ... )
|
|
|
|
table.sort( input )
|
|
local sorted = {}
|
|
for i = 1, #input do
|
|
local value = input[i]
|
|
sorted[value] = sorted[value] and sorted[value] + 1 or 1
|
|
end
|
|
|
|
local occurrences, least = 0, {}
|
|
for i, value in pairs( sorted ) do
|
|
if value > occurrences then
|
|
least = { i }
|
|
occurrences = value
|
|
elseif value == occurrences then
|
|
least[#least + 1] = i
|
|
end
|
|
end
|
|
|
|
if #least >= 1 then return least, occurrences
|
|
else return false end
|
|
end
|
|
|
|
-- Gets the range of the numbers.
|
|
local function getRange( ... )
|
|
local input = checkInput( ... )
|
|
local high, low = math.max( unpack( input ) ), math.min( unpack( input ) )
|
|
return high - low
|
|
end
|
|
|
|
-- Gets the variance of a set of numbers.
|
|
local function getVariance( ... )
|
|
local input = checkInput( ... )
|
|
local mean = getMean( ... )
|
|
local sum = 0
|
|
for i = 1, #input do
|
|
sum = sum + ( mean - input[i] ) * ( mean - input[i] )
|
|
end
|
|
return sum / #input
|
|
end
|
|
|
|
-- Gets the standard deviation of a set of numbers.
|
|
local function getStandardDeviation( ... )
|
|
return math.sqrt( getVariance( ... ) )
|
|
end
|
|
|
|
-- Gets the central tendency of a set of numbers.
|
|
local function getCentralTendency( ... )
|
|
local mode, occurrences = getMode( ... )
|
|
return mode, occurrences, getMedian( ... ), getMean( ... )
|
|
end
|
|
|
|
-- Gets the variation ratio of a data set.
|
|
local function getVariationRatio( ... )
|
|
local input = checkInput( ... )
|
|
local numbers, times = getMode( ... )
|
|
times = times * #numbers -- Account for bimodal data
|
|
return 1 - ( times / #input )
|
|
end
|
|
|
|
-- Gets the measures of dispersion of a data set.
|
|
local function getDispersion( ... )
|
|
return getVariationRatio( ... ), getRange( ... ), getStandardDeviation( ... )
|
|
end -- }}}
|
|
|
|
return {
|
|
_VERSION = 'MLib 0.10.0',
|
|
_DESCRIPTION = 'A math and shape-intersection detection library for Lua',
|
|
_URL = 'https://github.com/davisdude/mlib',
|
|
point = {
|
|
rotate = rotatePoint,
|
|
scale = scalePoint,
|
|
},
|
|
line = {
|
|
getLength = getLength,
|
|
getMidpoint = getMidpoint,
|
|
getSlope = getSlope,
|
|
getPerpendicularSlope = getPerpendicularSlope,
|
|
getYIntercept = getYIntercept,
|
|
getIntersection = getLineLineIntersection,
|
|
getClosestPoint = getClosestPoint,
|
|
getSegmentIntersection = getLineSegmentIntersection,
|
|
checkPoint = checkLinePoint,
|
|
|
|
-- Aliases
|
|
getDistance = getLength,
|
|
getCircleIntersection = getCircleLineIntersection,
|
|
getPolygonIntersection = getPolygonLineIntersection,
|
|
getLineIntersection = getLineLineIntersection,
|
|
},
|
|
segment = {
|
|
checkPoint = checkSegmentPoint,
|
|
getPerpendicularBisector = getPerpendicularBisector,
|
|
getIntersection = getSegmentSegmentIntersection,
|
|
|
|
-- Aliases
|
|
getCircleIntersection = getCircleSegmentIntersection,
|
|
getPolygonIntersection = getPolygonSegmentIntersection,
|
|
getLineIntersection = getLineSegmentIntersection,
|
|
getSegmentIntersection = getSegmentSegmentIntersection,
|
|
isSegmentCompletelyInsideCircle = isSegmentCompletelyInsideCircle,
|
|
isSegmentCompletelyInsidePolygon = isSegmentCompletelyInsidePolygon,
|
|
},
|
|
math = {
|
|
getRoot = getRoot,
|
|
isPrime = isPrime,
|
|
round = round,
|
|
getSummation = getSummation,
|
|
getPercentOfChange = getPercentOfChange,
|
|
getPercentage = getPercentage,
|
|
getQuadraticRoots = getQuadraticRoots,
|
|
getAngle = getAngle,
|
|
},
|
|
circle = {
|
|
getArea = getCircleArea,
|
|
checkPoint = checkCirclePoint,
|
|
isPointOnCircle = isPointOnCircle,
|
|
getCircumference = getCircumference,
|
|
getLineIntersection = getCircleLineIntersection,
|
|
getSegmentIntersection = getCircleSegmentIntersection,
|
|
getCircleIntersection = getCircleCircleIntersection,
|
|
isCircleCompletelyInside = isCircleCompletelyInsideCircle,
|
|
isPolygonCompletelyInside = isPolygonCompletelyInsideCircle,
|
|
isSegmentCompletelyInside = isSegmentCompletelyInsideCircle,
|
|
|
|
-- Aliases
|
|
getPolygonIntersection = getPolygonCircleIntersection,
|
|
isCircleInsidePolygon = isCircleInsidePolygon,
|
|
isCircleCompletelyInsidePolygon = isCircleCompletelyInsidePolygon,
|
|
},
|
|
polygon = {
|
|
getSignedArea = getSignedPolygonArea,
|
|
getArea = getPolygonArea,
|
|
getTriangleHeight = getTriangleHeight,
|
|
getCentroid = getCentroid,
|
|
getLineIntersection = getPolygonLineIntersection,
|
|
getSegmentIntersection = getPolygonSegmentIntersection,
|
|
checkPoint = checkPolygonPoint,
|
|
isSegmentInside = isSegmentInsidePolygon,
|
|
getPolygonIntersection = getPolygonPolygonIntersection,
|
|
getCircleIntersection = getPolygonCircleIntersection,
|
|
isCircleInside = isCircleInsidePolygon,
|
|
isPolygonInside = isPolygonInsidePolygon,
|
|
isCircleCompletelyInside = isCircleCompletelyInsidePolygon,
|
|
isSegmentCompletelyInside = isSegmentCompletelyInsidePolygon,
|
|
isPolygonCompletelyInside = isPolygonCompletelyInsidePolygon,
|
|
|
|
-- Aliases
|
|
isCircleCompletelyOver = isPolygonCompletelyInsideCircle,
|
|
},
|
|
statistics = {
|
|
getMean = getMean,
|
|
getMedian = getMedian,
|
|
getMode = getMode,
|
|
getRange = getRange,
|
|
getVariance = getVariance,
|
|
getStandardDeviation = getStandardDeviation,
|
|
getCentralTendency = getCentralTendency,
|
|
getVariationRatio = getVariationRatio,
|
|
getDispersion = getDispersion,
|
|
},
|
|
}
|